Vector and Matrix Norms LARP/2018

Norms

To meter the lengths of vectors in a vector space we need the idea of a norm.
Norm is a function that maps x to a nonnegative real number

$$
\|\cdot\|: \quad F \rightarrow R^{+}
$$

A Norm must satisfy following properties:
1-Positivity $\|\mathrm{x}\|>0, \forall \mathrm{x} \neq 0$
2-Homogeneity $\|\alpha x\|=|\alpha|\|x\|, \forall \mathrm{x} \in \mathrm{F}$ and $\forall \alpha \in \mathrm{C}$
3- Triangleinequality $\|\mathrm{x}+\mathrm{y}\| \leq\|x\|+\|y\|, \forall \mathrm{x}, \mathrm{y} \in \mathrm{F}$

Norm of vectors

p-norm is: $\quad\|x\|_{p}=\left(\sum_{i}\left|a_{i}\right|^{p}\right)^{\frac{1}{p}} \quad p \geq 1$

For $\mathrm{p}=1$ we have 1 -norm or sum norm $\|x\|_{1}=\left(\sum_{i}\left|a_{i}\right|\right)$
For $\mathrm{p}=2$ we have 2 -norm or euclidian $\|x\|_{2}=\left(\sum_{i}\left|a_{i}\right|^{2}\right)^{1 / 2}$
norm
For $\mathrm{p}=\infty$ we have ∞-norm or max

$$
\|x\|_{\infty}=\max _{i}\left\{\left|a_{i}\right|\right\}
$$ norm

Norm of vectors

$$
\text { Let } x=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \quad \text { Then } \begin{aligned}
& \|x\|_{1}=(1+1+2)=4 \\
& \|x\|_{2}=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{6} \\
& \|x\|_{\infty}=\max (1,1,2)=2
\end{aligned}
$$

- For any vector norm:

$$
\begin{aligned}
& \|x\|>0 \text { if } x \neq 0 \\
& \|\gamma x\|=|\gamma| \cdot\|x\| \text { for any scalar } \gamma \\
& \|x+y\| \leq\|x\|+\|y\| \text { (triangle inequality) }
\end{aligned}
$$

- These properties define a vector norm

Norm of real functions

Consider continuous functions on the interval [0,1] over the field of real numbers (R)

1 -norm is defined as

$$
\begin{gathered}
\|f(t)\|_{\infty}=\sup _{t \in[0,1]}|f(t)| \\
\|f(t)\|_{2}=\left(\int_{0}^{1}|f(t)|^{2} d t\right)^{\frac{1}{2}}
\end{gathered}
$$

The I_{p}-Norm

The $I_{p}-$ Norm for a vector x is defined as $(p \geq 1)$:

$$
\|x\|_{l_{p}}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Examples:

- for $p=2$ we have the ordinary euclidian norm:

$$
\|x\|_{l_{2}}=\sqrt{x^{T} x}
$$

- for $p=\infty$ the definition is

$$
\begin{aligned}
\|x\|_{l_{\infty}} & =\max _{1 \leq i \leq n}\left|x_{i}\right| \\
\|A\| & =\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
\end{aligned}
$$

- for I_{2} this means : $\|A\|_{2}=$ maximum eigenvalue of $A^{T} A$

Norm of matrices

We can extend norm of vectors to matrices

Sum matrix norm (extension of 1-norm of $\|A\|_{s u m}=\sum_{i, j}\left|a_{i j}\right|$
vectors) is:
Frobenius norm (extension of 2-norm of $\|A\|_{F}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}$
vectors) is:

$$
\|A\|_{F}=\sqrt{\operatorname{Tr}\left(A A^{T}\right)}
$$

Max element norm (extension of max $\|A\|_{\max }=\max _{i, j}\left|a_{i j}\right|$
norm of vectors) is:

Matrix norm

A norm of a matrix is called matrix norm if it satisfy

$$
\|A B\| \leq\|A\| \cdot\|B\|
$$

The induced-norm of a matrix A is defined as follows:

$$
\|A\|_{i p}=\max _{\|x\|_{p}=1}\|A x\|_{p}
$$

Any induced-norm of a matrix A is a matrix norm

Matrix norm for matrices

If we put $p=1$ so we have

$$
\|A\|_{i 1}=\max _{\|x\|_{1}=1}\|A x\|_{1}=\max _{j} \sum_{i}\left|a_{i j}\right| \quad \text { Maximum }
$$

Maximum absolute column sum of the matrix

If we put $p=\infty$, we have

$$
\|A\|_{i \infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right| \quad \begin{aligned}
& \text { Maximum row } \\
& \text { sum }
\end{aligned}
$$

Maximum absolute row sum of the matrix

Matrix norm for matrices

$$
\|A\|_{i p}=\max _{\| \|_{0} \|} \mid A x \|_{p}
$$

If we put $p=1$ so we have

$$
\|A\|_{i 1}=\max _{\|x\|_{1}=1}\|A x\|_{1}=\max _{j} \sum_{i}\left|a_{i j}\right| \quad \text { Maximum column sum }
$$

If we put $p=$ inf so we have

$$
\|A\|_{i \infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right| \quad \text { Maximum row sum }
$$

If we put $p=2$ so we have

$$
\|A\|_{i 2}=\max _{\|x\|_{2}=1}\|A x\|_{2}=\max _{\|x\|_{2} \neq 1} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{1}(A)=\sigma_{\max }(A)=\bar{\sigma}(A)
$$

- We will only use matrix norms "induced" by vector norms:
- 1-norm:

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

$$
\|A\|_{1}=\max _{j} \sum_{i=1}^{n}\left|A_{i j}\right| \quad(\text { max absolute column sum })
$$

- ∞-norm:

$$
\|A\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|A_{i j}\right| \quad(\text { max absolute row sum })
$$

Properties of Matrix Norms

- These induced matrix norms satisfy:

$$
\begin{aligned}
& \|A\|>0 \text { if } \mathrm{A} \neq 0 \\
& \|\gamma A\|=|\gamma| \cdot\|A\| \text { for any scalar } \gamma \\
& \|A+B\| \leq\|A\|+\|B\| \text { (triangle inequality) } \\
& \|A B\| \leq\|A\| \cdot\|B\| \\
& \|A x\| \leq\|A\| \cdot\|x\| \text { for any vector } x
\end{aligned}
$$

Condition Number

- If A is square and nonsingular, then

$$
\operatorname{cond}(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

- If A is singular, then cond $(A)=\infty$
- If A is nearly singular, then cond (A) is large.
- The condition number measures the ratio of maximum stretch to maximum shrinkage:

$$
\|A\| \cdot\left\|A^{-1}\right\|=\left(\max _{x \neq 0} \frac{\|A x\|}{\|x\|}\right) \cdot\left(\min _{x \neq 0} \frac{\|A x\|}{\|x\|}\right)^{-1}
$$

Properties of Condition Number

- For any matrix A, cond $(A) \geq 1$
- For the identity matrix, cond($/$) = 1
- For any permutation matrix, cond $(P)=1$
- For any scalar $\alpha, \operatorname{cond}(\alpha A)=\operatorname{cond}(A)$
- For any diagonal matrix D,

$$
\operatorname{cond}(D)=\left(\max \left|D_{i i}\right|\right) /\left(\min \left|D_{i i}\right|\right)
$$

Errors and Residuals

- Residual for an approximate solution y to $A x=b$ is defined as $r=b-A y$
- If A is nonsingular, then $||x-y||=0$ if and only if ||r||=0.
- Does not imply that if $\|r\|<\varepsilon$, then $\|x-y\|$ is small.

Estimating Accuracy

- Let x be the solution to $A x=b$
- Let y be the solution to $A y=c$
- Then a simple analysis shows that

$$
\frac{\|x-y\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|b-c\|}{\|c\|}
$$

- Errors in the data (b) are magnified by cond(A)
- Likewise for errors in A

