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Norms
To meter the lengths of vectors in a vector space
we need the idea of a norm.

+→ RF:.

Norm is a function that maps x to a nonnegative real 
number 

A Norm must satisfy following properties: 
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Norm of vectors
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Norm of vectors
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• For any vector norm:

• These properties define a vector norm

0 if 0

 for any scalar 

(triangle inequality)
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Norm of real functions
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The lp-Norm

The lp- Norm for a vector x is defined as (p≥1):
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Examples: 
- for p=2 we have the ordinary euclidian norm:

- for p= ∞ the definition is

- a norm for matrices is induced via 

- for l2 this means   :
||A||2=maximum eigenvalue of ATA

xxx T
l

=
2

inil
xx

≤≤
=

∞ 1
max

x
Ax

A
x 0

max
≠

=



8

Norm of matrices

We can extend norm of vectors to matrices

Sum matrix norm (extension of 1-norm of 
vectors) is:
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Matrix norm

A norm of a matrix is called matrix norm if it satisfy

BAAB .≤

The induced-norm of a matrix A is defined as follows:
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Any induced-norm of a matrix A is a matrix norm
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Matrix norm for matrices

If we put p=1 so we have
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Matrix norm for matrices

If we put p=1 so we have
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• We will only use matrix norms “induced” by vector 
norms:

• 1-norm:  

• ∞-norm:  
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Properties of Matrix Norms

• These induced matrix norms satisfy:
0 if A 0

 for any scalar 

(triangle inequality)

 for any vector 
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Condition Number

• If A is square and nonsingular, then

• If A is singular, then cond(A) = ∞
• If A is nearly singular, then cond(A) is large.
• The condition number measures the ratio of 

maximum stretch to maximum shrinkage:
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Properties of Condition Number

• For any matrix A, cond(A) ≥ 1
• For the identity matrix, cond(I) = 1
• For any permutation matrix, cond(P) = 1
• For any scalar α, cond(α A) = cond(A)
• For any diagonal matrix D,

( ) ( )cond( ) max / minii iiD D D=



Errors and Residuals

• Residual for an approximate solution y to 
Ax = b is defined as r = b – Ay

• If A is nonsingular, then ||x – y|| = 0 if and only if 
||r || = 0.
• Does not imply that if ||r||<ε, then ||x-y|| is small.



Estimating Accuracy

• Let x be the solution to Ax = b
• Let y be the solution to Ay = c
• Then a simple analysis shows that

• Errors in the data (b) are magnified by cond(A)
• Likewise for errors in A
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